
Session 301

Cocoa: What’s New

Cocoa: What’s New

Ali Ozer
Manager, Cocoa Frameworks Group

Today’s Topics
•Foundation Changes
•AppKit Changes

Foundation Changes
•Managed preferences
•NSFileManager changes
•NSNetServices
•New keyed archiving mechanism
•New binary property list format
•And more…

AppKit Changes
•10.1 Changes

• NSDocument
• Text system
• NSView
• NSApplication
• Keyboard UI

AppKit Changes
•Jaguar Changes

• Text
• Localized file system view
• NSImage
• NSWindow
• Accessibility
• And more…

Foundation Changes

Chris Parker
Foundation Engineer

Cocoa Frameworks Group

Foundation Changes
•Managed preferences
•NSFileManager changes
•NSURLHandle
•NSNetServices

Managed Preferences
•Lab environments or single machines in homes
•A “forced” domain is created at the beginning
of the preference search path

•Users should not be able to change forced
settings

•Applications should disable controls where the
user cannot change the value of a preference key

•Forced values will be returned when using
objectForKey:

•Applications may need to determine if an object
for a given key can be changed:

Managed Preferences

-(BOOL)objectIsForcedForKey:.(NSString *)key;

-(BOOL)objectIsForcedForKey:.(NSString *)key

inDomain:.(NSString *)domain;

NSUserDefaults changes

NSFileManager
•Support for file flags

NSFileImmutable, NSFileAppendOnly

•Creation date and HFS Codes
NSFileCreationDate, NSFileHFSCreatorCode,
NSFileHFSTypeCode

•Account information
NSFileOwnerAccountID,
NSFileGroupOwnerAccountID

•Resource fork and catalog info preserved
•Intermediate directory creation

NSURLHandle
•FTP support added
•Many bugs shaken out
•Asynchronous hostname lookup
•Integration with System Configuration planned

IPv6 in Jaguar
•Jaguar now has IPv6 support in the OS
•NSHost now returns IPv6 addresses with
IPv4 addresses

•NSSocketPort now allows IPv6, IPv4 addresses
in addition to host name for host arguments

•NSSocketPort prefers IPv4 addresses for
compatibility

•NSURL (and CFURL) not IPv6 savvy yet

NSNetServices
•Exposes lower level OS features at
Foundation level

•Dynamic discovery of TCP/IP-based services
•No prior knowledge of addresses or hosts
•Services are advertised
•Services are discovered on the network
•Discovered services are resolved for connection

•Services are published in a domain (local.arpa.)
•Services offered also have a name, type, and port
•Delegate object listens for events

NSNetService
Publishing a network service

NSNetService

•Publishing the service:
NSNetService *service = [[NSNetService alloc]

 initWithDomain: @“local.arpa.”

 type: @“_wwdc._tcp.”

 name: @“Nifty Demo Server”

 port: 4989];

[service setDelegate: someOtherObject];

[service publish];

•Delegate implements:
netServiceWillPublish:

netService:didNotPublish:

Publishing a network service

NSNetServiceBrowser

•Domains and services are dynamic
•Domains may come and go on the network
•Services appear and disappear
•An NSNetServiceBrowser informs its delegate
of events as they happen

Discovering domains and services

NSNetServiceBrowser

•Setup:
NSNetServiceBrowser *domainBrowser =

 [[NSNetServiceBrowser alloc] init];

[domainBrowser setDelegate:someOtherObject];

[domainBrowser searchForAllDomains];

•Delegate implements (among other things):
netServiceBrowser:didFindDomain:moreComing:

netServiceBrowser:didRemoveDomain:moreComing:

Discovering domains

NSNetServiceBrowser

•Setup:
NSNetServiceBrowser *serviceBrowser =

 [[NSNetServiceBrowser alloc] init];

[serviceBrowser setDelegate:someOtherObject];

[serviceBrowser

searchForServicesOfType:.@“_wwdc._tcp.”

inDomain:.@“local.arpa.”];

•Delegate implements:
netServiceBrowser:didFindService:moreComing:

netServicesBrowser:didRemoveService:moreComing:

Discovering services

NSNetServiceBrowser

 - (void)netServiceBrowser:.(NSNetServiceBrowser *)br
didFindService:.(NSNetService *)service
moreComing:.(BOOL)moreComing

 {
 [aNetService retain];
 [aNetService setDelegate:self];

 [aNetService resolve];
 }

Resolving a discovered service

NSNetServices

•API is asynchronous (requires a run loop)
•NSNetService objects created for resolving
cannot be used to publish

•NSNetServiceBrowser objects can only
search for one thing at a time

Additional Notes

Foundation Changes

Chris Kane
Foundation Engineer

Cocoa Frameworks Group

More Foundation Changes
•New keyed archiving mechanism
•New binary property list format and APIs
•Version checking
•More…

NSArchiver Issues
•Values must be unarchived in the same
order as they were archived

•All archived values must be unarchived
•Cannot probe the archive for values which
might not be there

•Reading new archives on older systems is
cumbersome

Keyed Archiving
•Saved values are given string names
•Values can be unarchived in any desired order
•Can choose to unarchive only the values
you want

•Can request values which may not be present
• Decode methods return default values (nil, 0)

Keyed Archiving
•Simplifies backward and forward compatibility
•Type checking is still done to match encodes
and decodes

•Some coercions are allowed
• float <–> double
• 32-bit int <–> 64-bit int

Keyed Archiving API
•New classes: NSKeyedArchiver,
NSKeyedUnarchiver

•NSCoding protocol remains the same
•New NSCoder methods which take string
“key” to identify the value
- (void)encodeObject:(id)obj forKey:(NSString *)key;

- (void)encodeBool:(BOOL)b forKey:(NSString *)key;

- (id)decodeObjectForKey:(NSString *)key;

- (BOOL)decodeBoolForKey:(NSString *)key;

Keyed Archiving API
•Not all NSCoder subclasses will “do”
keyed archiving

•New method to test a coder for
keyed-coding capabilities
- (BOOL)allowsKeyedCoding

•Currently only NSKeyedArchiver and
NSKeyedUnarchiver allow keyed archiving

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

// last line is an error //

Keyed Archiving Example
// code in encodeWithCoder:

[archiver encodeObject:obj1 forKey:@“Obj1”];

[archiver encodeInt:flags forKey:@“Flags”];

[archiver encodeObject:obj2 forKey:@“Obj2”];

// code in initWithCoder:

obj2 = [unarchiver decodeObjectForKey:@“Obj2”];

shape = [unarchiver decodeIntForKey:@“Shape”];

flags = [unarchiver decodeFloatForKey:@“Flags”];

Keyed Archiving
•Can encode as many values as desired at the top
level of the archive

•Should use unique prefix on string key names
•Can use inherited non-keyed coding methods
encodeValueOfObjCType:at:

Keyed Archiving Output
•Output of keyed archiving

• XML format property list
• New binary format property list

•IB allows you to save a .nib document using
NSKeyedArchiver, NSArchiver, or both

Keyed Archiving
•See Foundation release notes for more
information

• Converting existing classes
• How to plan for and do compatibility

New Property List Formats
•New binary property list format

• More compact
• Faster, especially for big property lists
• Additional capabilities after Jaguar

•XML property list format has been set to 1.0
• No changes from “0.9”

Changes to Property List API
•New class: NSPropertyListSerialization
•NSSerializer, NSDeserializer are deprecated

• Also do not support the new property
list types

Using New API and Features
•First use ObjC runtime checks

• Check for classes with NSClassFromString()
• Check for methods with -respondsToSelector:

•Current version global variables
double NSFoundationVersionNumber
double NSAppKitVersionNumber

Using New API and Features
•Macros recording older versions
 #define NSFoundationVersionNumber10_1 425.0

•Sometimes version macros in the release notes
 #define NSAppKitVersionNumberWithZZZ 635.0

Avoiding Using New API
•<AvailabilityMacros.h>
•Set MAC_OS_X_VERSION_MAX_ALLOWED

• MAC_OS_X_VERSION_10_1
•Tips

• Do not subclass new classes
• Do not reference new global variables

•See the release notes on the system

Unicode 3.2
•Foundation updated to support Unicode 3.2
•Unicode characters range from 0x0 to 0x10FFFF
•NSString model based on 16-bit characters
•Characters higher than 0xFFFF represented by
Unicode surrogate pairs

•Code which examines characters should use
- (NSRange) rangeOfComposedCharacterSequenceAtIndex:

New NSString API
•Methods to trim and pad ends of strings
•Precompose, decompose strings per Unicode 3.2
•New method to efficiently replace all
occurrences of one string in another
- (unsigned)replaceOccurrencesOfString:(NSString *)str

 withString:(NSString *)replacementString

 options:(unsigned)optFlags

 range:(NSRange)searchRange

NSString API Stricter
•Various methods in NSString, NSMutableString
now check arguments more rigorously for nil
and out-of-bounds

• These are programming errors—FIX
• Compatibility for apps linked on 10.1

•UTF-8 conversions now less forgiving about
invalid UTF-8 sequences

Executing on the Main Thread
•New NSObject method
- (void)performSelectorOnMainThread:(SEL)aSel

withArgument:(id)arg

waitUntilDone:(BOOL)wait

modes:(NSArray *)modeList

•Performs methods as a result of the run loop
•Ordering for a particular thread’s use is mostly
maintained, but no ordering amongst threads

AppKit Changes

Ali Ozer
Manager, Cocoa Frameworks Group

10.1 AppKit Changes

NSDocument
•Now has the ability to track documents
•Preserves attributes and aliases to documents
•Supports hidden extensions

Hidden Extension Support
•File extensions are a good idea for compatibility
with other systems and the web

•However, they confuse some users and
disgust others

•So, allow the file extension to be hidden
• It’s still in the name
• But not displayed

Hidden Extension Support
•When putting up a save panel, indicate you
support hidden extensions

•When save panel is dismissed, ask it whether
the user wanted the extension hidden or not

•The filename from the save panel will have
the extension in either case

- (void) setCanSelectHiddenExtension: (BOOL)flag;

- (BOOL) isExtensionHidden;

Hidden Extension Support
•If extension is hidden, use NSFileManager
to set this in the saved document’s name

NSMutableDictionary *attrs =
 [NSMutableDictionary dictionary];

[attrs setObject: [NSNumber numberWithBOOL:YES]
 forKey: NSFileExtensionHidden];

[[NSFileManager defaultManager]
 changeFileAttributes: attrs atPath: documentPath];

Hidden Extension Support
•When displaying document names, be sure to
use the display name API in NSFileManager

 - (NSString *) displayNameAtPath: (NSString *)path

Hidden Extension Support
•But wait! NSDocument does all this for you
•Supporting methods are available, if needed:
- (BOOL) fileNameExtensionWasHiddenInLastRunSavePanel;

- (NSDictionary *) fileAttributesToWriteToFile: (NSString *)f

 ofType: (NSString *)type

 saveOperation: (NSSaveOperationType)op;

- (NSString *) displayName;

Text System
•Supports filter services
•Knows how to speak

Filter Services in Text
•Following NSTextStorage methods cause filter
services to be invoked for unknown file types:
 - (id) initWithPath: (NSString *)path

 documentAttributes: (NSDictionary **)dict;

 - (id) initWithURL: (NSURL *)url

 documentAttributes: (NSDictionary **)dict;

 - (BOOL) readFromURL: (NSURL *)url

 options: (NSDictionary *)options

 documentAttributes: (NSDictionary **)dict;

Filter Services in Text
•New API to query types:

•And a new document attribute to find
out whether a filter service was used in
opening a document:

+ (NSArray *) textUnfilteredFileTypes;

+ (NSArray *) textUnfilteredPasteboardTypes;

+ (NSArray *) textFileTypes;

+ (NSArray *) textPasteboardTypes;

@“Converted”

Speaking Text
•New first responder action methods:

•Implemented by NSTextView
•Available to others responders to implement

- (void) startSpeaking: (id)sender;

- (void) stopSpeaking: (id)sender;

NSView
•Live resizing API for performance

• Sent once per during a live resize “session”:

Call super methods from these
Can do setNeedsDisplay:YES at end

• Additional convenience method:

 - (void) viewWillStartLiveResize;
 - (void) viewDidEndLiveResize;

 - (BOOL) inLiveResize;

NSApplication
•Ability to set contents of dock menu

• Provide an NSMenu in a nib
And specify the nib as AppleDockMenu in Info.plist

• Or via a delegate method
 - (NSMenu *) applicationDockMenu: (id)app;

NSApplication
•Dock notifications

•Automatic for modal panels in inactive apps

 typedef enum {

 NSCriticalRequest,

 NSInformationalRequest

 } NSRequestUserAttentionType;

 - (int) requestUserAttention: (NSRequestUserAttentionType)t;

 - (void) cancelUserAttentionRequest: (int)request;

Keyboard UI
•Came back to life 10.1
•Windows with initialFirstResponder are assumed
to have valid keyboard UI loops

• Otherwise the kit computes one for you

typedef enum {

 NSFocusRingOnly,

 NSFocusRingBelow,

 NSFocusRingAbove

} NSFocusRingPlacement;

void NSSetFocusRingStyle (NSFocusRingPlacement p);

Keyboard UI
•API to draw focus rings

•More discussion in “Cocoa Controls and Cocoa
Accessibility” talk

Jaguar AppKit Changes

Text System
•Comes with more built-in spelling checkers

• British English, anyone? A colorful language
•Supports right, centered, and decimal tab stops
•Does bidirectional text

Tab Stops

typedef enum {

 NSLeftTabStopType = 0,

 NSRightTabStopType,

 NSCenterTabStopType,

 NSDecimalTabStopType

} NSTextTabType;

Bidirectional Text
•Needed for proper support for Hebrew,
Arabic, and some other scripts

•New API
• New NSLayoutManager glyph attribute

NSGlyphAttributeBidiLevel

• New NSTypesetter subclass

Localized File System View
•Present files with
localized names

• Not localizing
the file system

• But the view of
the file system

Localized File System View
•When displaying document names, be sure
to use the display name API in NSFileManager

 - (NSString *) displayNameAtPath: (NSString *)path

Localizing Your App Name
•Add CFBundleName to Info.plist

• Same as the bundle’s actual name
•Add the key LSHasLocalizedDisplayName
with boolean value true

•Add CFBundleName in your InfoPlist.strings

NSTabView
•Directional tabs

Directional Tabs
•No new APIs
•These existing NSTabItem APIs still
work as before:
 - (void) drawLabel: (BOOL)truncate

 inRect: (NSRect)labelRect;

 - (NSSize) sizeOfLabel: (BOOL)computeMin;

NSImage
•Animated images
•Progressive image loading
•Caching policy

Animated Images
•Additional properties on NSImageReps created
from animated images:

NSImageFrameCount

NSImageCurrentFrame

NSImageCurrentFrameDuration

Progressive Image Loading
•Via NSImage delegate methods:
 - (void) image: (NSImage*)image

 willLoadRepresentation: (NSImageRep*)r;

 - (void) image: (NSImage*)image

 didLoadRepresentationHeader: (NSImageRep*)r;

 - (void) image: (NSImage*)image

 didLoadPartOfRepresentation: (NSImageRep*)r

 withValidRows: (int)rows;

 - (void) image: (NSImage*)image

 didLoadRepresentation: (NSImageRep*)r

 withStatus: (NSImageLoadStatus)status;

Caching Policy
•Makes it explicit whether NSImage should cache
its images (in off-screen windows)

 typedef enum {

 NSImageCacheAlways,

 NSImageCacheBySize,

 NSImageCacheNever

 } NSImageCachingMode;

 - (void) setImageCacheMode: (NSImageCachingMode)m;

 - (NSImageCachingMode) imageCacheMode;

Spinning (aka Chasing) Arrows
•NSProgressIndicator variant

typedef enum {

 NSProgressIndicatorBarStyle = 0,

 NSProgressIndicatorSpinningStyle

} NSProgressIndicatorStyle;

- (void) setStyle: (NSProgressIndicatorStyle) style;

- (NSProgressIndicatorStyle) style;

Spinning Arrows
•Additional API

•These apply to “bar” style as well as “spinning”

- (void) sizeToFit;

- (BOOL) isDisplayedWhenStopped;

- (void) setDisplayedWhenStopped: (BOOL) flag;

NSToolbar
•Now has small icon mode
 typedef enum {

 NSToolbarSizeModeDefault,

 NSToolbarSizeModeRegular,

 NSToolbarSizeModeSmall

 } NSToolbarSizeMode;

 - (void) setSizeMode: (NSToolbarSizeMode)mode;

 - (NSToolbarSizeMode) sizeMode;

NSWorkspace
•Application notifications now include the
following keys for additional info:

• NSApplicationPath, NSApplicationName
NSStrings containing full path and name

• NSApplicationProcessIdentifier
NSNumbers containing process id

• NSApplicationProcessSerialNumberHigh/Low
NSNumbers containing high and low parts of PSN

NSWorkspace
•Also has new methods for getting information
about running applications:

•These contain the same keys and values
described on the previous slide

 - (NSArray *) launchedApplications;

 - (NSDictionary *) activeApplication;

NSWindow
•New style of panel

•New style of window

NSNonactivatingPanelMask

NSTexturedBackgroundWindowMask

NSWindow
•Ability to move windows from the content area

•Ability to set background colors/patterns

 - (void) setMovableByWindowBackground: (BOOL)flag;

 - (void) setBackgroundColor: (NSColor *)color;

Carbon/Cocoa Integration
•Allow Cocoa apps to
use Carbon pieces

• NSPrintPanel
•Allow Carbon apps
to use Cocoa pieces

• NSFontPanel
• NSColorPanel

Cocoa/Carbon Integration
•Create an NSWindow around a Carbon window:
- (NSWindow *) initWithWindowRef: (WindowRef)ref;

•Return the Carbon window:
- (WindowRef)windowRef;

•Handle events via CarbonEvents

Cocoa/Carbon Integration
•It’s also possible to load Cocoa bundles
in Carbon apps

• Load bundle with CFBundle
• Initialize Cocoa with NSApplicationLoad()

•NSColorPanel
•NSFontPanel

NSPasteboard
•New pasteboard data type

NSVCardPboardType

•And a brand new framework with Cocoa APIs
for your other address-book and related needs

AddressBook.framework

•See “Address Book Framework” talk for details

Accessibility
•Enable writing assistive applications

• Screen readers
• Alternate input devices

•C APIs for assistive application creators
AXUIElementSetAttributeValue(), …

•Cocoa APIs for providing accessibility
features in Cocoa applications

Accessibility
•Cocoa UI elements implement the
NSAccessibility informal protocol

• Presents the user interface as a hierarchy of
“UI Elements” with attributes and actions

• Many built-in controls implement this
• Many subclassers also automatically benefit

•See “Cocoa Controls and Cocoa Accessibility”

Scripting
•NSAppleScript

• Load, compile, and execute scripts
• Get “pretty printed” scripts

•Automatic support for “Properties” property
•Better conversions
•See “Cocoa Scripting”

Release Notes
•Find Jaguar release notes on your Jaguar CD at:

/Developer/Documentation/ReleaseNotes/
AppKit.html
Foundation.html

Cocoa Documentation
•Object-Oriented Programming and the
Objective-C Language

•Programming Topics
Application Architecture Memory Management
Foundation Framework Multithreading
Loading Resources Notifications

…and many more!

Documentation > Cocoa
developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

For More Information
•O’Reilly “Learning Cocoa” and “Building Cocoa
Applications: A Step-by-Step Guide”

•Cocoa Developer Documentation
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

•Apple Customer Training
 http://train.apple.com/

306 Cocoa Text:

In-depth overview of the text system

Roadmap
Hall 2

Thurs., 9:00am
Hall 2

Thurs., 9:00am

302 Cocoa API Techniques:

Understanding, leveraging, and extending

Room A2
Thurs., 10:30am

Room A2
Thurs., 10:30am

303 Cocoa Scripting:

Scripting overview and recent changes

Room A2
Thurs., 5:00pm

Room A2
Thurs., 5:00pm

304 Cocoa Controls and Accessibility:

Overview of controls; new Accessibility APIs

Hall 2
Fri., 10:30am

Hall 2
Fri., 10:30am

305 Cocoa Drawing:

Drawing using Cocoa APIs

Room J
Fri., 2:00pm
Room J

Fri., 2:00pm

Room C
Fri., 3:30pm
Room C

Fri., 3:30pm

Room J
Thurs., 2:00pm

Room J
Thurs., 2:00pm

012 Address Book Framework:

Overview of new Address Book APIs

811 Zero Configuration Networking:

Support for services, dynamic configuration

Roadmap (Cont.)
Room C

Tue., 5:00pm
Room C

Tue., 5:00pm

805 Introducting CFNetwork:

CF APIs for networking and services

Room A1
Fri., 5:00pm
Room A1

Fri., 5:00pm

FF016 Cocoa:
Comments and suggestions for Cocoa

Who to Contact
Heather Hickman
Cocoa Technology Manager
hhickman@apple.com

http://developer.apple.com/wwdc2002/urls.html

Heather Hickman
Cocoa Evangelist

hhickman@apple.com

Q&A

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

